A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway
نویسندگان
چکیده
Hypoxia induces protective autophagy in glioblastoma cells and new therapeutic avenues that target this process may improve the outcome for glioblastoma patients. Recent studies have suggested that the autophagic process is upregulated in glioblastomas in response to extensive hypoxia. Hypoxia also induces the upregulation of a specific set of proteins and microRNAs (miRNAs) in a variety of cell types. IL6 (interleukin 6), an inflammatory autocrine and paracrine cytokine that is overexpressed in glioblastoma, has been reported to be a biomarker for poor prognosis because of its tumor-promoting effects. Here, we describe a novel tumor-promoting mechanism of IL6, whereby hypoxia-induced IL6 acts as a potent initiator of autophagy in glioblastoma via the phosphorylated (p)-STAT3-MIR155-3p pathway. IL6 and p-STAT3 levels correlated with the abundance of autophagic cells and HIF1A levels in human glioma tissues and with the grade of human glioma, whereas inhibition of exogenous or endogenous IL6 repressed autophagy in glioblastoma cells in vitro. Knockdown of endogenous MIR155-3p inhibited IL6-induced autophagy, and enforced expression of MIR155-3p restored the anti-autophagic activity of IL6 inhibitors. We show that the hypoxia-IL6-p-STAT3-MIR155-3p-CREBRF-CREB3-ATG5 pathway plays a central role in malignant glioma progression, with blockade of the IL6 receptor by tocilizumab demonstrating a certain level of therapeutic efficacy in a xenograft model in vivo, especially in combination with temozolomide. Moreover, tocilizumab inhibits autophagy by promoting tumor apoptosis. Collectively, our findings provide new insight into the molecular mechanisms underlying hypoxia-induced glioma cell autophagy and point toward a possible efficacious adjuvant therapy for glioblastoma patients.
منابع مشابه
Interleukin-6/STAT3 Pathway Signaling Drives an Inflammatory Phenotype in Group A Ependymoma.
Ependymoma (EPN) in childhood is a brain tumor with substantial mortality. Inflammatory response has been identified as a molecular signature of high-risk Group A EPN. To better understand the biology of this phenotype and aid therapeutic development, transcriptomic data from Group A and B EPN patient tumor samples, and additional malignant and normal brain data, were analyzed to identify the m...
متن کاملCancer Therapy: Preclinical CD126 and Targeted Therapy with Tocilizumab in Chronic Lymphocytic Leukemia
Purpose: IL6 promotes tumor growth and signal transduction via both its membrane-bound (CD126) and soluble receptors (sCD126). We aimed to study whether the levels of CD126 expression in chronic lymphocytic leukemic (CLL) cells can predict in vitro and in vivo treatment response. Experimental Design: The levels of membrane-bound CD126 expression were determined on freshly isolated CLL B cells (...
متن کاملCD126 and Targeted Therapy with Tocilizumab in Chronic Lymphocytic Leukemia.
PURPOSE IL6 promotes tumor growth and signal transduction via both its membrane-bound (CD126) and soluble receptors (sCD126). We aimed to study whether the levels of CD126 expression in chronic lymphocytic leukemic (CLL) cells can predict in vitro and in vivo treatment response. EXPERIMENTAL DESIGN The levels of membrane-bound CD126 expression were determined on freshly isolated CLL B cells (...
متن کاملNaringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway
Naringenin is a natural compound with potential anti-cancer effects against several cancer types. Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...
متن کاملHypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway
Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of...
متن کامل